Narrow River Ecosystem Restoration Project Update September 2008

New England District
U.S. Army Corps of Engineers
696 Virginia Road
Concord, MA 01742-2751

Problems

- Degraded water quality contributing to aquatic habitat degradation
- Loss of salt marsh
- Loss of eelgrass habitat
- Loss of shellfish habitats

1894 Topographic Map

Narrow River in 1939

Lost Salt Marsh

(Isolate Nutrient Enriched Sediments)

1894 USGS Map

Degraded Salt Marsh

Eroding Salt Marsh

(Reduce sediment suspension)

Eroding Marsh

Boat Prop/Wake Erosion

(Reduce salt marsh erosion and sediment suspension)

Potential Channels

3' deep by 25' wide navigation channel to control erosion/eelgrass disturbance

~4' deep channel to improve flushing

Degraded Aquatic Habitats Eelgrass and Shellfish

(Increase nutrient removal/filtration)

Eelgrass N of Middle Bridge

Potential Restoration Measures

Potential Project Features

Plant Buffer Zones

Sediment/ Nutrient BMPs

> Restore Salt Marsh Substrate & Plant

Restore Substrate for Shellfish/Eelgrass

Restore Eelgrass by improving Water Quality

> Restore Eelgrass

Establish Navigation Channel

Protect Salt Marsh Edges

Dredge for Flushing

Construct Sedimentation Basin

Information Flow

Sediment Management

Sediment Sample Locations

- ~25 sampling stations
- Sediment grain size
- Sediment nutrient concentration
- Sampled 2005/2008

URI Sediment Mapping

See PDF

Sediment Grain Size

- Narragansett Beach
 - ->99% sand; 0.2 to 0.4 mm median size
- Flood tidal shoal
 - ->96% sand; 0.2 to 0.4 mm median size
- Lower River
 - 59 to 92% sand; 0.1 to 0.2 mm med size; hi OM
- Pettaquamscutt Cove
 - 8 to 91% sand; high organic matter

Improve Water Quality

Water Quality Improvement

- Reduce nutrient input from the watershed
- Reduce nutrient transfer from the sediments to the water
- Increase nutrient uptake by vegetation and shellfish
- Increase flushing of nutrients from the estuary

Corps Water Quality Policy

- May involve measures to improve water quality parameters as components of ecosystem structure and function
- May not include activities that would principally treat or otherwise abate pollution problems caused by other parties who have...a legal responsibility for remediation or compliance

Nitrogen Concentrations

Benthic Resources Diversity

- Concentrations in the Narrow River:
 - Upper Pond and Lower Pond 0.5-0.8 mg/L
 - Lacey Bridge to Middle Bridge 0.5-0.6 mg/L
 - Middle Bridge to Sprague Bridge 0.3-0.6 mg/L

Nitrogen Concentrations

Benthic Resources Diversity

- Concentrations in the Narrow River:
 - Upper Pond and Lower Pond 0.5-0.8 mg/L
 - Lacey Bridge to Middle Bridge 0.5-0.6 mg/L
 - Middle Bridge to Sprague Bridge 0.3-0.6 mg/L

Nitrogen Concentrations

Benthic Resources Diversity

- Concentrations in the Narrow River:
 - Upper Pond and Lower Pond 0.5-0.8 mg/L
 - Lacey Bridge to Middle Bridge 0.5-0.6 mg/L
 - Middle Bridge to Sprague Bridge 0.3-0.6 mg/L

Nitrate Reduction Concept

Restore/Improve Tidal Flushing

(Reduce nutrient concentrations)

Tide Monitoring Results

Elevation Transect Locations

Survey Profile

Narrow River Minimum Tidal Elevation vs. Model Station

Narrow River Modeled Tidal Prism Percent Change vs. Alternative

Alternative

Narrow River Modeled Flushing Time Percent Reduction vs. Alternative

Alternative

Findings

- Significant increases in tidal prism and reductions in flushing times are possible with substantial changes to the inlet depth (e.g. to -4 ft NGVD)
- Minor increases in tidal elevations in lower system
- Significantly lower low tide elevations are possible with substantial inlet deepening
- Major dredging in the inlet could affect its stability – detailed modeling would be needed

NLM/ELM Modeling

Estuarine Loading Model

Open water area	ha
Salt marsh area	ha
Eelgrass bed area	ha
Average depth	m
Freshwater discharge volume from ground and surface water	m cubed per yr
Total watershed area (land)	ha
Length of receiving shoreline subtended	m
Number of houses	
Land derived TDN	kg per yr
Freshwater stream reaches TDN	kg per yr
Tidal range	m
Tidal period	hrs per day
Flushing time (hydrodynamic model input)	days
Flushing time of the freshwater reach	days

PRELIMINARY ELM OUTPUT

	Description	Total N Reduction (kg per year)	Percent N Reduction
1	No Action	-	-
2	Dredge all	57	0.2 %
3	17 acres SAV restoration	81	0.4 %
4	23 acres SAV restoration	111	0.5 %
5	65 acres SAV restoration	315	1.6 %
6	17 acres salt marsh restoration	537	2.7 %
7	17 acres salt marsh + 23 acres SAV	648	3.3 %
8	17 acres salt marsh + 23 acres SAV + dredge all	705	3.6 %

Preliminary Findings

- Dredging the inlet would not result in a substantial improvement in the quality of estuarine habitats
- The inlet shoals provide important water bird habitat, especially for migrating terns
- Dredging the shoals and placing the material on Narragansett Beach is not recommended

Restoration Alternatives

Alternative A - No Action

Alternative B

LEGEND

Salt Marsh Restoration

Eelgrass Restoration

LOCATION MAP

NOTES & SOURCES

Aerial Photos: Color Digital Orthophotos Date Flown: 2003, 2004 Source: Rhode Island Department of Transportation Geographic Projection: NAD 83 Rhode Island State Plane (feet)

TITLE

Narrow River Ecological Restoration Project Alternative B Eelgrass and Salt Marsh Restoration

500 1,000

New England District

FIGURE В

Ninigret Pond Eelgrass

Coir Log

Alternative C

Slope Protection

Alternative D

Alternative E

Alternative F

Alternative G

Alternative H

Alternative I

Preliminary Costs and Benefits

Alternative	EG	SM	Total	Cost (millions)
A	0	0	0	\$0
В	9	10	19	\$ 1.7
C	19	16	35	\$ 3.7
D	34	19	52	\$ 4.7
Е	65	19	84	\$ 10.0
F	65	12	77	\$ 9.5
G	65	16	81	\$ 10.1
Н	65	15	80	\$9.4

Preliminary Cost Effective Plans

Alternative	Acres	Cost (1,000s)	Avrg Cost/ Acre	IC per Acre
A	0	\$0	•	
В	19	\$ 1.7	\$92	\$92
C	35	\$ 3.7	\$107	\$107
D	_52	\$ 4.7	\$97	\$99
Н	80	\$9.4	\$123	\$136
E	84	\$ 10.0	\$124	\$165

Restoration Measure J

Restoration Measure K

Discussion

Larry Oliver

978-318-8347

